Sufficient statistics and expectation maximization algorithms in phylogenetic tree models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient statistics and expectation maximization algorithms in phylogenetic tree models

MOTIVATION Measuring evolutionary conservation is a routine step in the identification of functional elements in genome sequences. Although a number of studies have proposed methods that use the continuous time Markov models (CTMMs) to find evolutionarily constrained elements, their probabilistic structures have been less frequently investigated. RESULTS In this article, we investigate a suff...

متن کامل

Expectation Maximization for Combined Phylogenetic and Hidden Markov Models

An expectation maximization (EM) algorithm is derived to estimate the parameters of a phylogenetic model, a probabilistic model of molecular evolution that considers the phylogeny, or evolutionary tree, by which a set of present-day organisms are related. The EM algorithm is then extended for use with a combined phylogenetic and hidden Markov model. An efficient method is also shown for computi...

متن کامل

Mixture Models and Expectation-Maximization

This tutorial attempts to provide a gentle introduction to EM by way of simple examples involving maximum-likelihood estimation of mixture-model parameters. Readers familiar with ML paramter estimation and clustering may want to skip directly to Sections 5.2 and 5.3.

متن کامل

The Expectation-Maximization and Alternating Minimization Algorithms

The Expectation-Maximization (EM) algorithm is a hill-climbing approach to finding a local maximum of a likelihood function [7, 8]. The EM algorithm alternates between finding a greatest lower bound to the likelihood function (the “E Step”), and then maximizing this bound (the “M Step”). The EM algorithm belongs to a broader class of alternating minimization algorithms [6], which includes the A...

متن کامل

Noise Benefits in Expectation-Maximization Algorithms

This dissertation shows that careful injection of noise into sample data can substantially speed up Expectation-Maximization algorithms. Expectation-Maximization algorithms are a class of iterative algorithms for extracting maximum likelihood estimates from corrupted or incomplete data. The convergence speed-up is an example of a noise benefit or"stochastic resonance"in statistical signal proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2011

ISSN: 1460-2059,1367-4803

DOI: 10.1093/bioinformatics/btr420